Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Sci Rep ; 14(1): 9411, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658579

ABSTRACT

Matrix Metalloproteinases (MMPs) have been demonstrated to be essential in facilitating the migration and metastasis of clear cell renal cell carcinoma (ccRCC). However, the ability of the MMP family to predict clinical outcomes and guide optimal therapeutic strategies for ccRCC patients remains incompletely understood. In this investigation, we initially conducted a thorough examination of the MMP family in pan-cancer. Notably, MMPs exhibited distinctive significance in ccRCC. Following this, we undertook an extensive analysis to evaluate the clinical value of MMPs and potential mechanisms by which MMPs contribute to the progression of ccRCC. A novel stratification method and prognostic model were developed based on MMPs in order to enhance the accuracy of prognosis prediction for ccRCC patients and facilitate personalized treatment. By conducting multi-omics analysis and transcriptional regulation analysis, it was hypothesized that SAA1 plays a crucial role in promoting ccRCC migration through MMPs. Subsequently, in vitro experiments confirmed that SAA1 regulates ccRCC cell migration via the ERK-AP1-MMPs axis. In conclusion, our study has explored the potential value of the MMP family as prognostic markers for ccRCC and as guides for medication regimens. Additionally, we have identified SAA1 as a crucial factor in the migration of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Movement , Kidney Neoplasms , Matrix Metalloproteinases , Serum Amyloid A Protein , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Humans , Cell Movement/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/genetics , Prognosis , Cell Line, Tumor , Serum Amyloid A Protein/metabolism , Serum Amyloid A Protein/genetics , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Signal Transduction
4.
J Exp Clin Cancer Res ; 42(1): 215, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37599359

ABSTRACT

BACKGROUND: N7-methylguanosine (m7G) modification is, a more common epigenetic modification in addition to m6A modification, mainly found in mRNA capsids, mRNA interiors, transfer RNA (tRNA), pri-miRNA, and ribosomal RNA (rRNA). It has been found that m7G modifications play an important role in mRNA transcription, tRNA stability, rRNA processing maturation, and miRNA biosynthesis. However, the role of m7G modifications within mRNA and its "writer" methyltransferase 1(METTL1) in tumors, particularly prostate cancer (PCa), has not been revealed. METHODS: The differential expression level of METTL1 between hormone-sensitive prostate cancer (HSPC) and castrate-resistant prostate cancer (CRPC) was evaluated via RNA-seq and in vitro experiments. The effects of METTL1 on CRPC progression were investigated through in vitro and in vivo assays. The upstream molecular mechanism of METTL1 expression upregulation and the downstream mechanism of its action were explored via Chromatin Immunoprecipitation quantitative reverse transcription polymerase chain reaction (CHIP-qPCR), Co-immunoprecipitation (Co-IP), luciferase reporter assay, transcriptome-sequencing, m7G AlkAniline-Seq, and mRNA degradation experiments, etc. RESULTS AND CONCLUSION: Here, we found that METTL1 was elevated in CRPC and that patients with METTL1 elevation tended to have a poor prognosis. Functionally, the knockdown of METTL1 in CRPC cells significantly limited cell proliferation and invasive capacity. Mechanistically, we unveiled that P300 can form a complex with SP1 and bind to the promoter region of the METTL1 gene via SP1, thereby mediating METTL1 transcriptional upregulation in CRPC. Subsequently, our findings indicated that METTL1 leads to enhanced mRNA stability of CDK14 by adding m7G modifications inside its mRNA, ultimately promoting CRPC progression.


Subject(s)
Methyltransferases , Prostatic Neoplasms, Castration-Resistant , Sp1 Transcription Factor , Humans , Male , Cell Proliferation , Chromatin Immunoprecipitation , Cyclin-Dependent Kinases , Methyltransferases/genetics , MicroRNAs , Prostatic Neoplasms, Castration-Resistant/genetics , RNA Stability
6.
Cancer Rep (Hoboken) ; 6(8): e1824, 2023 08.
Article in English | MEDLINE | ID: mdl-37344930

ABSTRACT

BACKGROUND: The six-transmembrane epithelial antigen of the prostate 3 (STEAP3) is a metalloreductase, which is essential for iron uptake. Existing literature has shown that STEAP3 may perform an important role in the onset and progression of tumors. Nonetheless, a complete pan-cancer investigation of the prognostic significance and immune properties of STEAP3 is currently unavailable. AIMS: As part of our investigation into the possible functions of STEAP3 in malignancies, we conducted a comprehensive analysis to examine the prognostic value and immune features of STEAP3 in human pan-cancer. METHODS AND RESULTS: R and Cytoscape programs were applied to analyze and visualize the data. The expression of STEAP3 in both cell lines and tissues was measured utilizing a variety of approaches. Using the shRNA knockdown technique, we tested the viability of the A498 and 786-O cell lines and validated their functions. Both CCK-8 and transwell assays were conducted to estimate cell proliferation and invasion. The expression of STEAP3 was substantially elevated and was shown to be linked to prognosis in the majority of malignancies, notably in clear cell renal cell carcinoma (ccRCC). In addition, the expression of STEAP3 was shown to have a strong correlation with immune infiltrates, which in turn triggered the recruitment and polarization of M2 macrophages in ccRCC. The protein STEAP3 shows promise as a predictor of responses to immune-checkpoint blockade (ICB) therapy. Positive links between STEAP3 and the epithelial-mesenchymal transition (EMT), the p53 pathway, and the immune-associated pathways were also found in the enrichment analysis. Our results illustrated that the STEAP3 expression level was substantially elevated in ccRCC tissues and suggested that it could stimulate EMT in ccRCC by downregulating CDH1. CONCLUSION: In a diverse range of cancers, STEAP3 might serve as a biomarker for determining the prognosis as well as a predictor of immunotherapy responsiveness. STEAP3 is a novel biological marker for determining prognosis, and it also performs a remarkable function in the promotion of tumor growth in ccRCC by enhancing invasion and EMT, as well as by triggering the recruitment and polarization of M2 macrophages.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Male , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Prognosis , Prostate/pathology , Cell Proliferation/genetics
8.
Cell Death Dis ; 14(4): 289, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095108

ABSTRACT

As the most common modification of RNA, N6-methyladenosin (m6A) has been confirmed to be involved in the occurrence and development of various cancers. However, the relationship between m6A and castration resistance prostate cancer (CRPC), has not been fully studied. By m6A-sequencing of patient cancer tissues, we identified that the overall level of m6A in CRPC was up-regulated than castration sensitive prostate cancer (CSPC). Based on the analysis of m6A-sequencing data, we found m6A modification level of HRas proto-oncogene, GTPase (HRAS) and mitogen-activated protein kinase kinase 2 (MEK2 or MAP2K2) were enhanced in CRPC. Specifically, tissue microarray analysis and molecular biology experiments confirmed that METTL3, an m6A "writer" up-regulated after castration, activated the ERK pathway to contribute to malignant phenotype including ADT resistance, cell proliferation and invasion. We revealed that METTL3-mediated ERK phosphorylation by stabilizing the transcription of HRAS and positively regulating the translation of MEK2. In the Enzalutamide-resistant (Enz-R) C4-2 and LNCap cell line (C4-2R, LNCapR) established in the current study, the ERK pathway was confirmed to be regulated by METTL3. We also found that applying antisense oligonucleotides (ASOs) to target the METTL3/ERK axis can restore Enzalutamide resistance in vitro and in vivo. In conclusion, METTL3 activated the ERK pathway and induced the resistance to Enzalutamide by regulating the m6A level of critical gene transcription in the ERK pathway.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prostatic Neoplasms, Castration-Resistant/pathology , Androgens , Receptors, Androgen/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Nitriles , Cell Proliferation , Methyltransferases
9.
Cell Death Dis ; 14(3): 215, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973255

ABSTRACT

Enabled resistance or innate insensitiveness to antiandrogen are lethal for castration-resistant prostate cancer (CRPC). Unfortunately, there seems to be little can be done to overcome the antiandrogen resistance because of the largely unknown mechanisms. In prospective cohort study, we found that HOXB3 protein level was an independent risk factor of PSA progression and death in patients with metastatic CRPC. In vivo, upregulated HOXB3 contributed to CRPC xenografts progression and abiraterone resistance. To uncover the mechanism of HOXB3 driving tumor progression, we performed RNA-sequencing in HOXB3 negative (HOXB3-) and HOXB3 high (HOXB3 + ) staining CRPC tumors and determined that HOXB3 activation was associated with the expression of WNT3A and enriched WNT pathway genes. Furthermore, extra WNT3A and APC deficiency led HOXB3 to be isolated from destruction-complex, translocated to nuclei, and then transcriptionally regulated multiple WNT pathway genes. What's more, we also observed that the suppression of HOXB3 could reduce cell proliferation in APC-downregulated CRPC cells and sensitize APC-deficient CRPC xenografts to abiraterone again. Together, our data indicated that HOXB3 served as a downstream transcription factor of WNT pathway and defined a subgroup of CRPC resistant to antiandrogen which would benefit from HOXB3-targeted therapy.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/pathology , Prospective Studies , Genes, Homeobox , Androgen Antagonists , Wnt Signaling Pathway , Receptors, Androgen/metabolism , Cell Line, Tumor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
10.
Cell Death Dis ; 13(11): 927, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335093

ABSTRACT

Androgen receptor (AR) plays an important role in the progression of prostate cancer and has been targeted by castration or AR-antagonists. The emergence of castration-resistant prostate cancer (CRPC) after androgen deprivation therapy (ADT) is inevitable. However, it is not entirely clear how ADT fails or how it causes resistance. Through analysis of RNA-seq data, we nominate ARHGEF2 as a pivotal androgen-repressed gene. We show that ARHGEF2 is directly suppressed by androgen/AR. AR occupies the enhancer and communicates with the promoter region of ARHGEF2. Functionally, ARHGEF2 is important for the growth, lethal phenotype, and survival of CRPC cells and tumor xenografts. Correspondingly, AR inhibition or AR antagonist treatment can restore ARHGEF2 expression, thereby allowing prostate cancer cells to induce treatment resistance and tolerance. Overall, our findings provide an explanation for the contradictory clinical results that ADT resistance may be caused by the up-regulation of ARHGEF2 and provide a novel target.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostate/metabolism , Transcriptional Activation , Cell Line, Tumor , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism
11.
Dis Markers ; 2022: 3780391, 2022.
Article in English | MEDLINE | ID: mdl-35983409

ABSTRACT

Background: A rising amount of data demonstrates that the epithelial-mesenchymal transition (EMT) in clear cell renal cell carcinomas (ccRCC) is connected with the advancement of the cancer. In order to understand the role of EMT in ccRCC, it is critical to integrate molecules involved in EMT into prognosis prediction. The objective of this project was to establish a prognosis prediction model using genes associated with EMT in ccRCC. Methods: We acquired the mRNA expression profiles and clinical information about ccRCC from TCGA database. In this study, we measured differentially expressed EMT-related genes (DEEGs) by two comparison groups (tumor versus normal tissues; "stages I-II" versus "stages III-IV" tumor tissues). Based on classification and regression random forest models, we identified the most important DEEGs in predicting prognosis. Afterwards, a risk-score model was created using the identified important DEEGs. The prediction ability of the risk-score model was calculated by the area under the curve (AUC). A nomogram for prognosis prediction was built using the risk-score in combination with clinical factors. Results: Among the 72 DEEGs, the classification and regression random forest models identified six hub genes (DKK1, DLX4, IL6, KCNN4, RPL22L1, and SPDEF), which exhibited the highest importance values in both models. Through the expression of these six hub genes, a novel risk-score was developed for the prognosis prediction of ccRCC. ROC curves showed the risk-score performed well in both the training (0.749) and testing (0.777) datasets. According to the survival analysis, individuals who were separated into high/low-risk groups had statistically different outcomes in terms of prognosis. Besides, the risk-score model also showed outstanding ability in assessing the progression of ccRCC after treatment. In terms of nomogram, the concordance index (C-index) was 0.79. Additionally, we predicted the differences in response to chemotherapy drugs among patients from low- and high-risk groups. Conclusion: Gene signatures related to EMT could be useful in predicting ccRCC prognosis.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/pathology , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins , Humans , Kidney Neoplasms/pathology , Prognosis , Transcription Factors/genetics
12.
Epigenomics ; 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35852112

ABSTRACT

Aims: We aimed to determine whether intronic circRNA acts as a molecular sponge in castration-resistant prostate cancer (CRPC). Materials & methods: A gene chip technique was used to conduct sequencing. A qPCR experiment was performed to verify the result. Radioimmunoprecipitation, RNA pull-down and dual-luciferase reporter assays were performed to particularly expound its function. Verification of downstream effects was carried out through qPCR and western blot, and a xenograft assay was performed in vivo for verification. Results: Intronic circRNA hsa_circ_0092339 in the nucleus was highly expressed in CRPC cell lines. hsa_circ_0092339 did not regulate the expression of its parental gene. hsa_circ_0092339 functions like a molecular sponge, preventing degradation of C-MYC mRNA by absorbing hsa-mir-940. Conclusion: hsa_circ_0092339 plays a critical role in CRPC through targeting C-MYC indirectly by absorbing hsa-mir-940.


Our research breaks the mold by investigating a novel function of RNA and a novel regulatory mechanism. Our research provides a new therapeutic target for prostate cancer treatment and broadens the understanding of prostate cancer.

13.
Prostate ; 82(4): 464-474, 2022 03.
Article in English | MEDLINE | ID: mdl-35037281

ABSTRACT

OBJECTIVES: This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS: All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS: Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION: The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.


Subject(s)
Carcinoma, Neuroendocrine/drug therapy , Carcinoma, Neuroendocrine/genetics , DNA Repair/genetics , Platinum Compounds/therapeutic use , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Aged , Antineoplastic Agents , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Carboplatin/therapeutic use , Carcinoma, Neuroendocrine/pathology , Cisplatin/therapeutic use , Humans , Male , Middle Aged , Prostatic Neoplasms/pathology , Retrospective Studies , Survival Rate , Treatment Outcome
14.
Oncogene ; 41(3): 387-399, 2022 01.
Article in English | MEDLINE | ID: mdl-34759344

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a highly malignant type of advanced cancer resistant to androgen deprivation therapy. One of the important mechanisms for the development of CRPC is the persistent imbalanced regulation of AR and AR splice variants (AR/AR-Vs). In this study, we reported KDM4A-AS1, a recently discovered lncRNA, as a tumor promoter that was significantly increased in CRPC cell lines and cancer tissues. Depletion of KDM4A-AS1 significantly reduced cell viability, proliferation, migration in vitro, and tumor growth in vivo. We found that by binding to the NTD domain, KDM4A-AS1 enhances the stability of USP14-AR/AR-Vs complex, and promoted AR/AR-Vs deubiquitination to protect it from MDM2-mediated ubiquitin-proteasome degradation. Moreover, KDM4A-AS1 was found to enhance CRPC drug resistance to enzalutamide by repressing AR/AR-Vs degradation; antisense oligonucleotide drugs targeting KDM4A-AS1 significantly reduced the growth of tumors with enzalutamide resistance. Taken together, our results indicated that KDM4A-AS1 played an important role in the progression of CRPC and enzalutamide resistance by regulating AR/AR-Vs deubiquitination; targeting KDM4A-AS1 has broad clinical application potential.


Subject(s)
Benzamides/therapeutic use , Jumonji Domain-Containing Histone Demethylases/metabolism , Nitriles/therapeutic use , Phenylthiohydantoin/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Aged , Animals , Benzamides/pharmacology , Cell Line, Tumor , Humans , Male , Mice , Nitriles/pharmacology , Phenylthiohydantoin/pharmacology
15.
Bioengineered ; 12(1): 2649-2663, 2021 12.
Article in English | MEDLINE | ID: mdl-34116604

ABSTRACT

In recent years, genes associated with N6-methyladenosine (m6A) modification were found to participate in modulation of multiple tumor biological processes. Concomitantly, the significantly complicated dual effects of tumor microenvironment have been observed on cancer progression. The present study aims to investigate m6A-related immune genes (m6AIGs) for their signatures and prognostic values in bladder cancer (BC). Out of 2856 differentially expressed genes (DEGs) of BC, a total of 85 genes were obtained following intersection of DEGs, immune genes and m6A-related genes. The results of multivariate Cox regression analysis illustrated four genes (BGN, GRK5, IL32, and SREBF1) were significantly associated with the prognosis of BC patients. The BC samples were divided into two types based on the consensus clustering, and the principal component analysis demonstrated a separation between them. It was found that high expression of BGN and GRK5 were linked with advanced T and N stage, and the expression of SREBF1 in early T stage was higher than that in advanced T stage. Subsequently, the nomogram to predict 3- and 5-year survival probability of BC patients was developed and calibrated. GSEA analysis for risk subgroups showed WNT and TGF-beta signaling pathways were involved in regulation of BC progression in high risk level group. In the low risk level group, cytosolic DNA-Sensing cGAS-STING and RIG-I-like receptors signaling pathways were found to be correlated with BC development. These findings provide a novel insight on studies for BC progression.


Subject(s)
Adenosine/analogs & derivatives , Biomarkers, Tumor , Transcriptome , Urinary Bladder Neoplasms , Adenosine/genetics , Adenosine/immunology , Adenosine/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Humans , Prognosis , Transcriptome/genetics , Transcriptome/immunology , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology , Urinary Bladder Neoplasms/mortality
16.
J Exp Clin Cancer Res ; 39(1): 36, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066485

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are an important part of the tumour microenvironment, and their functions are of great concern. This series of experiments aimed to explore how Yes-associated protein 1 (YAP1) regulates the function of stromal cells and how the normal fibroblasts (NFs) convert into CAFs in prostate cancer (PCa). METHODS: The effects of conditioned media from different fibroblasts on the proliferation and invasion of epithelial cells TrampC1 were examined. We then analysed the interaction between the YAP1/TEAD1 protein complex and SRC, as well as the regulatory function of the downstream cytoskeletal proteins and actins. A transplanted tumour model was used to explore the function of YAP1 in regulating tumour growth through stromal cells. The relationship between the expression of YAP1 in tumour stromal cells and the clinical characteristics of PCa patients was analysed. RESULTS: The expression level of YAP1 was significantly upregulated in PCa stromal cells. After the expression level of YAP1 was increased, NF was transformed into CAF, enhancing the proliferation and invasion ability of epithelial cells. The YAP1/TEAD1 protein complex had the capability to influence downstream cytoskeletal proteins by regulating SRC transcription; therefore, it converts NF to CAF, and CAF can significantly promote tumour growth and metastasis. The high expression of YAP1 in the tumour stromal cells suggested a poor tumour stage and prognosis in PCa patients. CONCLUSION: YAP1 can convert NFs into CAFs in the tumour microenvironment of PCa, thus promoting the development and metastasis of PCa. Silencing YAP1 in tumour stromal cells can effectively inhibit tumour growth.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cancer-Associated Fibroblasts/metabolism , Cell Transformation, Neoplastic/genetics , DNA-Binding Proteins/metabolism , Disease Susceptibility , Nuclear Proteins/metabolism , Prostatic Neoplasms/etiology , Prostatic Neoplasms/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Biomarkers , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Disease Progression , Fluorescent Antibody Technique , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Models, Biological , Neoplasm Staging , Protein Binding , TEA Domain Transcription Factors , Xenograft Model Antitumor Assays , YAP-Signaling Proteins
17.
Oncogene ; 38(24): 4885, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31048775

ABSTRACT

A correction to this paper has been published and can be accessed via a link at the top of the paper.

18.
Oncogene ; 38(24): 4875-4884, 2019 06.
Article in English | MEDLINE | ID: mdl-30770901

ABSTRACT

Castration-resistant prostate cancer (CRPC) with neuroendocrine differentiation (NED) is a lethal disease for which effective therapies are urgently needed. The mechanism underlying development of CRPC with NED, however, remains largely uncharacterized. In this study, we explored and characterized the functional role of neurotensin (NTS) in cell line and animal models of CRPC with NED. NTS was acutely induced by androgen deprivation in animal models of prostate cancer (PCa) and activated downstream signaling leading to NED through activation of neurotensin receptor 1 (NTSR1) and neurotensin receptor 3 (NTSR3), but not neurotensin receptor 2 (NTSR2). Our findings also revealed the existence of a CK8+/CK14+ subpopulation in the LNCaP cell line that expresses high levels of both NTSR1 and NTSR3, and displays an enhanced susceptibility to develop neuroendocrine-like phenotypes upon treatment with NTS. More importantly, NTSR1 pathway inhibition prevented the development of NED and castration resistance in vivo. We propose a novel role of NTS in the development of CRPC with NED, and a possible strategy to prevent the onset of NED by targeting the NTS signaling pathway.


Subject(s)
Cell Transdifferentiation/genetics , Neuroendocrine Cells/physiology , Neurotensin/physiology , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Neurotensin/physiology , Adaptor Proteins, Vesicular Transport/physiology , Animals , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred BALB C , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/physiopathology
19.
Nucleic Acids Res ; 47(8): 4211-4225, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30773595

ABSTRACT

In PTEN-deficient prostate cancers, AKT signaling may be activated upon suppression of androgen receptor signaling. Activation of AKT as well as NF-κB signaling involves a key regulatory protein complex containing PHLPP, FKBP51 and IKKα. Here, we report a critical role of lncRNA PCAT1 in regulating the PHLPP/FKBP51/IKKα complex and progression of castration-resistant prostate cancer (CRPC). Using database queries, bioinformatic analyses, as well as RIP and RNA pull-down assays, we discovered and validated that the lncRNA-PCAT1 perturbs the PHLPP/FKBP51/IKKα complex and activates AKT and NF-κB signaling. Expression of lncRNA-PCAT1 is positively linked to CRPC progression. PCAT1 binds directly to FKBP51, displacing PHLPP from the PHLPP/FKBP51/IKKα complex, leading to activation of AKT and NF-κB signaling. Targeting PCAT1 restores PHLPP binding to FKBP1 leading to suppression of AKT signaling. Preclinical study in a mouse model of CRPC suggests therapeutic potential by targeting lncRNA PCAT1 to suppress CRPC progression. Together, the newly identified PCAT1/FKBP51/IKKα complex provides mechanistic insight in the interplay between AKT, NF-κB and AR signaling in CRPC, and the preclinical studies suggest that a novel role for PCAT1 as a therapeutic target.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , NF-kappa B/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA, Long Noncoding/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Datasets as Topic , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Male , Mice , Mice, Nude , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/antagonists & inhibitors , RNA, Long Noncoding/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Survival Analysis , Tacrolimus Binding Proteins/genetics , Tacrolimus Binding Proteins/metabolism , Xenograft Model Antitumor Assays
20.
Ann Transl Med ; 7(23): 729, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32042745

ABSTRACT

BACKGROUND: As deregulation of androgen receptor (AR) signaling target genes is associated with tumorigenesis and the development of prostate cancer (PCa), AR signaling is the primary therapeutic target for PCa. Although patients initially responses to first-line androgen deprivation therapies (ADTs), most of them with advanced PCa progress to lethal castration-resistant prostate cancer (CRPC). Recent studies have suggested the molecular mechanisms by which AR elicit the robust up-regulation of the FKBP51 gene. We suggest that restored expression of FKBP51 gene, modulated by androgen receptor splicing variant 7 (AR-V7) which replaces full length androgen receptor (AR-FL) in androgen ablation status, promotes CRPC progression through activating NF-κB signaling. METHODS: Immunohistochemistry assays were used to detect the expression of AR-V7, FKBP51 and NF-κB signaling correlated proteins in CRPC tissues. An androgen ablation resistant PCa cell line model established by Long-term culturing in androgen depleted medium, named androgen-independent LNCaP (LNCaP-AI) cells, were used to dynamically monitor FKBP51 expression during the process of androgen dependent PCa cells transforming into androgen-independent cells, as well as its association with NF-κB signal pathway. LNCaP-AI cell line was determined to express AR-V7 protein continuously. Luciferase reporter assays and DNA pull down were used to determine the association between AR-V7 and FKBP51. RESULTS: Our results suggested that CRPC patients with AR-V7 high expression tend to have higher expression of FKBP51 and enhanced NF-κB signaling compared with AR-V7 negative patients. Knockdown of AR-V7 or FKBP51 in LNCaP-AI cells attenuated the level of p-NF-κB (Ser536) and androgen-resistant cells growth. Luciferase reporter assays and DNA pull down results indicated that FKBP51 was transcriptionally promoted by AR-V7 in absence of androgen, which enhanced NF-κB signaling. CONCLUSIONS: Because of upregulation of AR-V7 in androgen-independent PCa cells, increasing of FKBP51 induced NF-κB signaling, leading to progression of CRPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...